PyMC: a modern, and comprehensive probabilistic programming framework in Python

Author:

Abril-Pla Oriol1ORCID,Andreani Virgile23ORCID,Carroll Colin4,Dong Larry56,Fonnesbeck Christopher J.7,Kochurov Maxim8,Kumar Ravin9,Lao Junpeng10ORCID,Luhmann Christian C.1112,Martin Osvaldo A.13ORCID,Osthege Michael14,Vieira Ricardo8,Wiecki Thomas8,Zinkov Robert15ORCID

Affiliation:

1. ArviZ-Devs, Barcelona, Spain

2. Biomedical Engineering Department, Boston University, Boston, United States of America

3. Biological Design Center, Boston University, Boston, United States of America

4. Google, Cambridge, MA, United States of America

5. Dalla Lana School of Public Health, University of Toronto, Toronto, Canada

6. Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Canada

7. Baseball Operations Research and Development, Philadelphia Phillies, Philadelphia, United States of America

8. PyMC Labs, Berlin, Germany

9. Google, Mountain View, CA, United States of America

10. Google, Zürich, Switzerland

11. Department of Psychology, Stony Brook University, Stony Brook, United States of America

12. Institute for Advanced Computational Science, Stony Brook University, Stony Brook NY, United States of America

13. IMASL-CONICET, Universidad Nacional de San Luis, San Luis, Argentina

14. Forschungszentrum Jülich GmbH, Jülich, Germany

15. Oxford University, Oxford, United Kingdom

Abstract

PyMC is a probabilistic programming library for Python that provides tools for constructing and fitting Bayesian models. It offers an intuitive, readable syntax that is close to the natural syntax statisticians use to describe models. PyMC leverages the symbolic computation library PyTensor, allowing it to be compiled into a variety of computational backends, such as C, JAX, and Numba, which in turn offer access to different computational architectures including CPU, GPU, and TPU. Being a general modeling framework, PyMC supports a variety of models including generalized hierarchical linear regression and classification, time series, ordinary differential equations (ODEs), and non-parametric models such as Gaussian processes (GPs). We demonstrate PyMC’s versatility and ease of use with examples spanning a range of common statistical models. Additionally, we discuss the positive role of PyMC in the development of the open-source ecosystem for probabilistic programming.

Funder

NumFOCUS

PyMC Labs

National Agency of Scientific and Technological Promotion ANPCyT

National Scientific and Technical Research Council CONICET

Publisher

PeerJ

Subject

General Computer Science

Reference62 articles.

1. aesara-devs/aesara: rel-2.8.9;Bastien,2022a

2. pymc-devs/pytensor: rel-2.8.12;Bastien,2022b

3. Identifying the optimal integration time in Hamiltonian Monte Carlo;Betancourt;ArXiv preprint,2016

4. A sampling library designed for ease of use, speed, and modularity;BlackJax devs,2022

5. Introduction to Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3