SBML2HYB: a Python interface for SBML compatible hybrid modeling

Author:

Pinto José1ORCID,Costa Rafael S1ORCID,Alexandre Leonardo12ORCID,Ramos João1ORCID,Oliveira Rui1

Affiliation:

1. LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa , Caparica 2829-516, Portugal

2. INESC-ID , Lisboa, Portugal

Abstract

Abstract Summary Here, we present sbml2hyb, an easy-to-use standalone Python tool that facilitates the conversion of existing mechanistic models of biological systems in Systems Biology Markup Language (SBML) into hybrid semiparametric models that combine mechanistic functions with machine learning (ML). The so-formed hybrid models can be trained and stored back in databases in SBML format. The tool supports a user-friendly export interface with an internal format validator. Two case studies illustrate the use of the sbml2hyb tool. Additionally, we describe HMOD, a new model format designed to support and facilitate hybrid models building. It aggregates the mechanistic model information with the ML information and follows as close as possible the SBML rules. We expect the sbml2hyb tool and HMOD to greatly facilitate the widespread usage of hybrid modeling techniques for biological systems analysis. Availability and implementation The Python interface, source code and the example models used for the case studies are accessible at: https://github.com/r-costa/sbml2hyb. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

European Union’s Horizon 2020

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference24 articles.

1. The era of big data: genome-scale modelling meets machine learning;Antonakoudis;Comput. Struct. Biotechnol,2020

2. LibSBML: an API library for SBML;Bornstein;Bioinformatics,2008

3. Hybrid metabolic flux analysis: combining stoichiometric and statistical constraints to model the formation of complex recombinant products;Carinhas;BMC Syst. Biol,2011

4. Control of the threonine-synthesis pathway in Escherichia coli: a theoretical and experimental approach;Chassagnole;Biochem. J,2001

5. Projection to latent pathways (PLP): a constrained projection to latent variables (PLS) method for elementary flux modes discrimination;Ferreira;BMC Syst. Biol,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3