From Shallow to Deep Bioprocess Hybrid Modeling: Advances and Future Perspectives

Author:

Agharafeie Roshanak12ORCID,Ramos João Rodrigues Correia2ORCID,Mendes Jorge M.13,Oliveira Rui2ORCID

Affiliation:

1. Nova Information Management School (NOVA IMS), NOVA University Lisbon, Campus de Campolide, 1070-312 Lisboa, Portugal

2. LAQV-REQUIMTE, Nova School of Science and Technology (NOVA-SST), NOVA University Lisbon, Campus da Caparica, 2829-516 Caparica, Portugal

3. NOVA Cairo at The Knowledge Hub Universities, New Administrative Capital, Cairo 11835, Egypt

Abstract

Deep learning is emerging in many industrial sectors in hand with big data analytics to streamline production. In the biomanufacturing sector, big data infrastructure is lagging compared to other industries. A promising approach is to combine deep neural networks (DNN) with prior knowledge in hybrid neural network (HNN) workflows that are less dependent on the quality and quantity of data. This paper reviews published articles over the past 30 years on the topic of HNN applications to bioprocesses. It reveals that HNNs have been applied to various bioprocesses, including microbial cultures, animal cells cultures, mixed microbial cultures, and enzyme biocatalysis. HNNs have been applied for process analysis, process monitoring, development of software sensors, open- and closed-loop control, batch-to-batch control, model predictive control, intensified design of experiments, quality-by-design, and recently for the development of digital twins. Most previous HNN studies have combined shallow feedforward neural networks (FFNNs) with physical laws, such as macroscopic material balance equations, following the semiparametric design principle. Only recently, deep HNNs based on deep FFNNs, convolution neural networks (CNN), long short-term memory (LSTM) networks and physics-informed neural networks (PINNs) have been reported. The biopharma sector is currently a major driver but applications to biologics quality attributes, new modalities, and downstream processing are significant research gaps.

Funder

Fundação para a Ciência e Tecnologia

European Commission

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3