HAT: de novo variant calling for highly accurate short-read and long-read sequencing data

Author:

Ng Jeffrey K1,Turner Tychele N1ORCID

Affiliation:

1. Department of Genetics, Washington University School of Medicine , St Louis, MO 63110, USA

Abstract

Abstract Motivation de novo variants (DNVs) are variants that are present in offspring but not in their parents. DNVs are both important for examining mutation rates as well as in the identification of disease-related variation. While efforts have been made to call DNVs, calling of DNVs is still challenging from parent–child sequenced trio data. We developed Hare And Tortoise (HAT) as an automated DNV detection workflow for highly accurate short-read and long-read sequencing data. Reliable detection of DNVs is important for human genomics and HAT addresses this need. Results HAT is a computational workflow that begins with aligned read data (i.e. CRAM or BAM) from a parent–child sequenced trio and outputs DNVs. HAT detects high-quality DNVs from Illumina short-read whole-exome sequencing, Illumina short-read whole-genome sequencing, and highly accurate PacBio HiFi long-read whole-genome sequencing data. The quality of these DNVs is high based on a series of quality metrics including number of DNVs per individual, percent of DNVs at CpG sites, and percent of DNVs phased to the paternal chromosome of origin. Availability and implementation https://github.com/TNTurnerLab/HAT

Funder

National Institutes of Health

Simons Foundation

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3