Decomposition of phenotypic heterogeneity in autism reveals distinct and coherent genetic programs

Author:

Litman AviyaORCID,Sauerwald NatalieORCID,Snyder LeeAnne GreenORCID,Foss-Feig JenniferORCID,Park Christopher Y.ORCID,Hao YunORCID,Dinstein IlanORCID,Theesfeld Chandra L.ORCID,Troyanskaya Olga G.ORCID

Abstract

AbstractUnraveling the phenotypic and genetic complexity of autism is extremely challenging yet critical for understanding the biology, inheritance, trajectory, and clinical manifestations of the many forms of the condition. Here, we leveraged broad phenotypic data from a large cohort with matched genetics to characterize classes of autism and their patterns of core, associated, and co-occurring traits, ultimately demonstrating that phenotypic patterns are associated with distinct genetic and molecular programs. We used a generative mixture modeling approach to identify robust, clinically-relevant classes of autism which we validate and replicate in a large independent cohort. We link the phenotypic findings to distinct patterns ofde novoand inherited variation which emerge from the deconvolution of these genetic signals, and demonstrate that class-specific common variant scores strongly align with clinical outcomes. We further provide insights into the distinct biological pathways and processes disrupted by the sets of mutations in each class. Remarkably, we discover class-specific differences in the developmental timing of genes that are dysregulated, and these temporal patterns correspond to clinical milestone and outcome differences between the classes. These analyses embrace the phenotypic complexity of children with autism, unraveling genetic and molecular programs underlying their heterogeneity and suggesting specific biological dysregulation patterns and mechanistic hypotheses.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3