Autoencoder-based drug–target interaction prediction by preserving the consistency of chemical properties and functions of drugs
Author:
Affiliation:
1. College of Computer Science, Nankai University, Tianjin 300071, China
2. Institute of Big Data, Nankai University, Tianjin 300071, China
3. School of Artificial Intelligence, Jilin University, Changchun 130012, China
Abstract
Funder
National Key R&D Programs of China
National Natural Science Foundation of China
Natural Science Foundation of Tianjin City
Publisher
Oxford University Press (OUP)
Subject
Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability
Link
http://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btab384/38818189/btab384.pdf
Reference40 articles.
1. Drug–target interaction prediction: databases, web servers and computational models;Chen;Brief. Bioinform,2016
2. Structure-based maximal affinity model predicts small-molecule druggability;Cheng;Nat. Biotechnol,2007
3. DTI-MLCD: predicting drug-target interactions using multi-label learning with community detection method;Chu;Brief. Bioinform,2020
4. DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features;Chu;Brief. Bioinform,2021
Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. DTRE: A model for predicting drug-target interactions of endometrial cancer based on heterogeneous graph;Future Generation Computer Systems;2024-12
2. Drug-target interactions prediction via graph isomorphic network and cyclic training method;Expert Systems with Applications;2024-09
3. A review of deep learning methods for ligand based drug virtual screening;Fundamental Research;2024-07
4. BiTGNN: Prediction of drug–target interactions based on bidirectional transformer and graph neural network on heterogeneous graph;International Journal of Biomathematics;2024-05-21
5. Predicting drug–protein interactions by preserving the graph information of multi source data;BMC Bioinformatics;2024-01-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3