Autoencoder-based drug–target interaction prediction by preserving the consistency of chemical properties and functions of drugs

Author:

Sun Chang12ORCID,Cao Yangkun3,Wei Jin-Mao12,Liu Jian12

Affiliation:

1. College of Computer Science, Nankai University, Tianjin 300071, China

2. Institute of Big Data, Nankai University, Tianjin 300071, China

3. School of Artificial Intelligence, Jilin University, Changchun 130012, China

Abstract

Abstract Motivation Exploring the potential drug–target interactions (DTIs) is a key step in drug discovery and repurposing. In recent years, predicting the probable DTIs through computational methods has gradually become a research hot spot. However, most of the previous studies failed to judiciously take into account the consistency between the chemical properties of drug and its functions. The changes of these relationships may lead to a severely negative effect on the prediction of DTIs. Results We propose an autoencoder-based method, AEFS, under spatial consistency constraints to predict DTIs. A heterogeneous network is established to integrate the information of drugs, proteins and diseases. The original drug features are projected to an embedding (protein) space by a multi-layer encoder, and further projected into label (disease) space by a decoder. In this process, the clinical information of drugs is introduced to assist the DTI prediction. By maintaining the distribution of drug correlation in the original feature, embedding and label space, AEFS keeps the consistency between chemical properties and functions of drugs. Experimental comparisons indicate that AEFS is more robust for imbalanced data and of significantly superior performance in DTI prediction. Case studies further confirm its ability to mine the latent DTIs. Availability and implementation The code of AEFS is available at https://github.com/JackieSun818/AEFS. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Key R&D Programs of China

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3