Affiliation:
1. Structural and Computational Biology Unit, EMBL , Meyerhofstraße 1 , Heidelberg 69117, Germany
Abstract
Abstract
Summary
PyHMMER provides Python integration of the popular profile Hidden Markov Model software HMMER via Cython bindings. This allows the annotation of protein sequences with profile HMMs and building new ones directly with Python. PyHMMER increases flexibility of use, allowing creating queries directly from Python code, launching searches, and obtaining results without I/O, or accessing previously unavailable statistics like uncorrected P-values. A new parallelization model greatly improves performance when running multithreaded searches, while producing the exact same results as HMMER.
Availability and implementation
PyHMMER supports all modern Python versions (Python 3.6+) and similar platforms as HMMER (x86 or PowerPC UNIX systems). Pre-compiled packages are released via PyPI (https://pypi.org/project/pyhmmer/) and Bioconda (https://anaconda.org/bioconda/pyhmmer). The PyHMMER source code is available under the terms of the open-source MIT licence and hosted on GitHub (https://github.com/althonos/pyhmmer); its documentation is available on ReadTheDocs (https://pyhmmer.readthedocs.io).
Funder
German Research Foundation
Deutsche Forschungsgemeinschaft
Publisher
Oxford University Press (OUP)
Subject
Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献