Array programming with NumPy

Author:

Harris Charles R.,Millman K. JarrodORCID,van der Walt Stéfan J.ORCID,Gommers RalfORCID,Virtanen Pauli,Cournapeau David,Wieser Eric,Taylor Julian,Berg Sebastian,Smith Nathaniel J.,Kern Robert,Picus MattiORCID,Hoyer StephanORCID,van Kerkwijk Marten H.,Brett Matthew,Haldane Allan,del Río Jaime Fernández,Wiebe MarkORCID,Peterson PearuORCID,Gérard-Marchant Pierre,Sheppard KevinORCID,Reddy Tyler,Weckesser Warren,Abbasi Hameer,Gohlke ChristophORCID,Oliphant Travis E.

Abstract

AbstractArray programming provides a powerful, compact and expressive syntax for accessing, manipulating and operating on data in vectors, matrices and higher-dimensional arrays. NumPy is the primary array programming library for the Python language. It has an essential role in research analysis pipelines in fields as diverse as physics, chemistry, astronomy, geoscience, biology, psychology, materials science, engineering, finance and economics. For example, in astronomy, NumPy was an important part of the software stack used in the discovery of gravitational waves1 and in the first imaging of a black hole2. Here we review how a few fundamental array concepts lead to a simple and powerful programming paradigm for organizing, exploring and analysing scientific data. NumPy is the foundation upon which the scientific Python ecosystem is constructed. It is so pervasive that several projects, targeting audiences with specialized needs, have developed their own NumPy-like interfaces and array objects. Owing to its central position in the ecosystem, NumPy increasingly acts as an interoperability layer between such array computation libraries and, together with its application programming interface (API), provides a flexible framework to support the next decade of scientific and industrial analysis.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference57 articles.

1. Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

2. Chael, A. et al. High-resolution linear polarimetric imaging for the Event Horizon Telescope. Astrophys. J. 286, 11 (2016).

3. Dubois, P. F., Hinsen, K. & Hugunin, J. Numerical Python. Comput. Phys. 10, 262–267 (1996).

4. Ascher, D., Dubois, P. F., Hinsen, K., Hugunin, J. & Oliphant, T. E. An Open Source Project: Numerical Python (Lawrence Livermore National Laboratory, 2001).

5. Yang, T.-Y., Furnish, G. & Dubois, P. F. Steering object-oriented scientific computations. In Proc. TOOLS USA 97. Intl Conf. Technology of Object Oriented Systems and Languages (eds Ege, R., Singh, M. & Meyer, B.) 112–119 (IEEE, 1997).

Cited by 9649 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3