KG-Hub—building and exchanging biological knowledge graphs

Author:

Caufield J Harry1ORCID,Putman Tim2,Schaper Kevin2,Unni Deepak R3,Hegde Harshad1,Callahan Tiffany J4,Cappelletti Luca5,Moxon Sierra A T1,Ravanmehr Vida6,Carbon Seth1,Chan Lauren E7,Cortes Katherina2ORCID,Shefchek Kent A2,Elsarboukh Glass2,Balhoff Jim8,Fontana Tommaso9,Matentzoglu Nicolas10,Bruskiewich Richard M11,Thessen Anne E2ORCID,Harris Nomi L1ORCID,Munoz-Torres Monica C2,Haendel Melissa A2ORCID,Robinson Peter N12ORCID,Joachimiak Marcin P1,Mungall Christopher J1ORCID,Reese Justin T1ORCID

Affiliation:

1. Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory , Berkeley, CA 94720, United States

2. Anschutz Medical Campus, University of Colorado , Aurora, CO 80045, United States

3. SIB Swiss Institute of Bioinformatics , Basel 1015, Switzerland

4. Department of Biomedical Informatics, Columbia University Irving Medical Center , New York, NY 10032, United States

5. Department of Computer Science, University of Milano , Milan 20126, Italy

6. Department of Lymphoma-Myeloma, MD Anderson Cancer Center , Houston, TX 77030, United States

7. College of Public Health and Human Sciences, Oregon State University , Corvallis, OR 97331, United States

8. Renaissance Computing Institute, University of North Carolina , Chapel Hill, NC 27517, United States

9. Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano , Milan 20133, Italy

10. Semanticly , Athens, Greece

11. STAR Informatics, Delphinai Corporation , Sooke, BC V9Z 0M3, Canada

12. The Jackson Laboratory for Genomic Medicine , Farmington, CT 06032, United States

Abstract

Abstract Motivation Knowledge graphs (KGs) are a powerful approach for integrating heterogeneous data and making inferences in biology and many other domains, but a coherent solution for constructing, exchanging, and facilitating the downstream use of KGs is lacking. Results Here we present KG-Hub, a platform that enables standardized construction, exchange, and reuse of KGs. Features include a simple, modular extract–transform–load pattern for producing graphs compliant with Biolink Model (a high-level data model for standardizing biological data), easy integration of any OBO (Open Biological and Biomedical Ontologies) ontology, cached downloads of upstream data sources, versioned and automatically updated builds with stable URLs, web-browsable storage of KG artifacts on cloud infrastructure, and easy reuse of transformed subgraphs across projects. Current KG-Hub projects span use cases including COVID-19 research, drug repurposing, microbial–environmental interactions, and rare disease research. KG-Hub is equipped with tooling to easily analyze and manipulate KGs. KG-Hub is also tightly integrated with graph machine learning (ML) tools which allow automated graph ML, including node embeddings and training of models for link prediction and node classification. Availability and implementation https://kghub.org.

Funder

Monarch Initiative

Phenomics First Resource, a Center of Excellence in Genomic Science

National Institute of Health

National Human Genome Research Institute

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3