An open source knowledge graph ecosystem for the life sciences

Author:

Callahan Tiffany J.ORCID,Tripodi Ignacio J.,Stefanski Adrianne L.,Cappelletti Luca,Taneja Sanya B.ORCID,Wyrwa Jordan M.,Casiraghi ElenaORCID,Matentzoglu Nicolas A.,Reese Justin,Silverstein Jonathan C.ORCID,Hoyt Charles TapleyORCID,Boyce Richard D.,Malec Scott A.,Unni Deepak R.ORCID,Joachimiak Marcin P.,Robinson Peter N.ORCID,Mungall Christopher J.,Cavalleri EmanueleORCID,Fontana Tommaso,Valentini GiorgioORCID,Mesiti MarcoORCID,Gillenwater Lucas A.,Santangelo Brook,Vasilevsky Nicole A.ORCID,Hoehndorf RobertORCID,Bennett Tellen D.,Ryan Patrick B.,Hripcsak George,Kahn Michael G.ORCID,Bada Michael,Baumgartner William A.,Hunter Lawrence E.

Abstract

AbstractTranslational research requires data at multiple scales of biological organization. Advancements in sequencing and multi-omics technologies have increased the availability of these data, but researchers face significant integration challenges. Knowledge graphs (KGs) are used to model complex phenomena, and methods exist to construct them automatically. However, tackling complex biomedical integration problems requires flexibility in the way knowledge is modeled. Moreover, existing KG construction methods provide robust tooling at the cost of fixed or limited choices among knowledge representation models. PheKnowLator (Phenotype Knowledge Translator) is a semantic ecosystem for automating the FAIR (Findable, Accessible, Interoperable, and Reusable) construction of ontologically grounded KGs with fully customizable knowledge representation. The ecosystem includes KG construction resources (e.g., data preparation APIs), analysis tools (e.g., SPARQL endpoint resources and abstraction algorithms), and benchmarks (e.g., prebuilt KGs). We evaluated the ecosystem by systematically comparing it to existing open-source KG construction methods and by analyzing its computational performance when used to construct 12 different large-scale KGs. With flexible knowledge representation, PheKnowLator enables fully customizable KGs without compromising performance or usability.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3