Affiliation:
1. School of Computer Science and Engineering, Central South University , Changsha, Hunan 410083, China
2. Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki , FI00014 Helsinki, Finland
Abstract
Abstract
Motivation
Drug repositioning is an effective strategy to identify new indications for existing drugs, providing the quickest possible transition from bench to bedside. With the rapid development of deep learning, graph convolutional networks (GCNs) have been widely adopted for drug repositioning tasks. However, prior GCNs based methods exist limitations in deeply integrating node features and topological structures, which may hinder the capability of GCNs.
Results
In this study, we propose an adaptive GCNs approach, termed AdaDR, for drug repositioning by deeply integrating node features and topological structures. Distinct from conventional graph convolution networks, AdaDR models interactive information between them with adaptive graph convolution operation, which enhances the expression of model. Concretely, AdaDR simultaneously extracts embeddings from node features and topological structures and then uses the attention mechanism to learn adaptive importance weights of the embeddings. Experimental results show that AdaDR achieves better performance than multiple baselines for drug repositioning. Moreover, in the case study, exploratory analyses are offered for finding novel drug–disease associations.
Availability and implementation
The soure code of AdaDR is available at: https://github.com/xinliangSun/AdaDR.
Funder
National Natural Science Foundation of China
Publisher
Oxford University Press (OUP)
Subject
Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献