A benchmark for automatic medical consultation system: frameworks, tasks and datasets

Author:

Chen Wei1ORCID,Li Zhiwei1,Fang Hongyi1,Yao Qianyuan1,Zhong Cheng1,Hao Jianye2,Zhang Qi3,Huang Xuanjing3,Peng Jiajie45ORCID,Wei Zhongyu15

Affiliation:

1. School of Data Science, Fudan University , Shanghai 200433, China

2. College of Intelligence and Computing, Tianjin University , Tianjin 300072, China

3. School of Computer Science, Fudan University , Shanghai 200433, China

4. School of Computer Science, Northwestern Polytechnical University , Xi’an 710000, China

5. Research Institute of Automatic and Complex Systems, Fudan University , Shanghai 200433, China

Abstract

Abstract Motivation In recent years, interest has arisen in using machine learning to improve the efficiency of automatic medical consultation and enhance patient experience. In this article, we propose two frameworks to support automatic medical consultation, namely doctor–patient dialogue understanding and task-oriented interaction. We create a new large medical dialogue dataset with multi-level fine-grained annotations and establish five independent tasks, including named entity recognition, dialogue act classification, symptom label inference, medical report generation and diagnosis-oriented dialogue policy. Results We report a set of benchmark results for each task, which shows the usability of the dataset and sets a baseline for future studies. Availability and implementation Both code and data are available from https://github.com/lemuria-wchen/imcs21. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3