Assessing and Optimizing Large Language Models on Spondyloarthritis Multi-Choice Question Answering: Protocol for Enhancement and Assessment

Author:

Wang AnanORCID,Wu YunongORCID,Ji XiaojianORCID,Wang XiangyangORCID,Hu JiawenORCID,Zhang FazhanORCID,Zhang ZhanchaoORCID,Pu DongORCID,Tang LuluORCID,Ma ShikuiORCID,Liu QiangORCID,Dong JingORCID,He KunlunORCID,Li KunpengORCID,Teng DaORCID,Li TaoORCID

Abstract

Background Spondyloarthritis (SpA), a chronic inflammatory disorder, predominantly impacts the sacroiliac joints and spine, significantly escalating the risk of disability. SpA’s complexity, as evidenced by its diverse clinical presentations and symptoms that often mimic other diseases, presents substantial challenges in its accurate diagnosis and differentiation. This complexity becomes even more pronounced in nonspecialist health care environments due to limited resources, resulting in delayed referrals, increased misdiagnosis rates, and exacerbated disability outcomes for patients with SpA. The emergence of large language models (LLMs) in medical diagnostics introduces a revolutionary potential to overcome these diagnostic hurdles. Despite recent advancements in artificial intelligence and LLMs demonstrating effectiveness in diagnosing and treating various diseases, their application in SpA remains underdeveloped. Currently, there is a notable absence of SpA-specific LLMs and an established benchmark for assessing the performance of such models in this particular field. Objective Our objective is to develop a foundational medical model, creating a comprehensive evaluation benchmark tailored to the essential medical knowledge of SpA and its unique diagnostic and treatment protocols. The model, post-pretraining, will be subject to further enhancement through supervised fine-tuning. It is projected to significantly aid physicians in SpA diagnosis and treatment, especially in settings with limited access to specialized care. Furthermore, this initiative is poised to promote early and accurate SpA detection at the primary care level, thereby diminishing the risks associated with delayed or incorrect diagnoses. Methods A rigorous benchmark, comprising 222 meticulously formulated multiple-choice questions on SpA, will be established and developed. These questions will be extensively revised to ensure their suitability for accurately evaluating LLMs’ performance in real-world diagnostic and therapeutic scenarios. Our methodology involves selecting and refining top foundational models using public data sets. The best-performing model in our benchmark will undergo further training. Subsequently, more than 80,000 real-world inpatient and outpatient cases from hospitals will enhance LLM training, incorporating techniques such as supervised fine-tuning and low-rank adaptation. We will rigorously assess the models’ generated responses for accuracy and evaluate their reasoning processes using the metrics of fluency, relevance, completeness, and medical proficiency. Results Development of the model is progressing, with significant enhancements anticipated by early 2024. The benchmark, along with the results of evaluations, is expected to be released in the second quarter of 2024. Conclusions Our trained model aims to capitalize on the capabilities of LLMs in analyzing complex clinical data, thereby enabling precise detection, diagnosis, and treatment of SpA. This innovation is anticipated to play a vital role in diminishing the disabilities arising from delayed or incorrect SpA diagnoses. By promoting this model across diverse health care settings, we anticipate a significant improvement in SpA management, culminating in enhanced patient outcomes and a reduced overall burden of the disease. International Registered Report Identifier (IRRID) DERR1-10.2196/57001

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3