Affiliation:
1. Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
2. Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
Abstract
Abstract
Motivation
Increasing number of gene expression profiles has enabled the use of complex models, such as deep unsupervised neural networks, to extract a latent space from these profiles. However, expression profiles, especially when collected in large numbers, inherently contain variations introduced by technical artifacts (e.g. batch effects) and uninteresting biological variables (e.g. age) in addition to the true signals of interest. These sources of variations, called confounders, produce embeddings that fail to transfer to different domains, i.e. an embedding learned from one dataset with a specific confounder distribution does not generalize to different distributions. To remedy this problem, we attempt to disentangle confounders from true signals to generate biologically informative embeddings.
Results
In this article, we introduce the Adversarial Deconfounding AutoEncoder (AD-AE) approach to deconfounding gene expression latent spaces. The AD-AE model consists of two neural networks: (i) an autoencoder to generate an embedding that can reconstruct original measurements, and (ii) an adversary trained to predict the confounder from that embedding. We jointly train the networks to generate embeddings that can encode as much information as possible without encoding any confounding signal. By applying AD-AE to two distinct gene expression datasets, we show that our model can (i) generate embeddings that do not encode confounder information, (ii) conserve the biological signals present in the original space and (iii) generalize successfully across different confounder domains. We demonstrate that AD-AE outperforms standard autoencoder and other deconfounding approaches.
Availability and implementation
Our code and data are available at https://gitlab.cs.washington.edu/abdincer/ad-ae.
Contact
Supplementary information
Supplementary data are available at Bioinformatics online.
Funder
National Institutes of Health
National Science Foundation
CAREER
Publisher
Oxford University Press (OUP)
Subject
Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献