Computing linkage disequilibrium aware genome embeddings using autoencoders

Author:

Taş Gizem1ORCID,Westerdijk Timo2,Postma Eric3, ,van Rheenen Wouter,Bakker Mark K,van Eijk Kristel R,Kooyman Maarten,Al Khleifat Ahmad,Iacoangeli Alfredo,Ticozzi Nicola,Cooper-Knock Johnathan,Gromicho Marta,Chandran Siddharthan,Morrison Karen E,Shaw Pamela J,Hardy John,Sendtner Michael,Meyer Thomas,Başak Nazli,Fogh Isabella,Chiò Adriano,Calvo Andrea,Pupillo Elisabetta,Logroscino Giancarlo,Gotkine Marc,Vourc’h Patrick,Corcia Philippe,Couratier Philippe,Millecamps Stèphanie,Salachas François,Mora Pardina Jesus S,Rojas-García Ricardo,Dion Patrick,Ross Jay P,Ludolph Albert C,Weishaupt Jochen H,Freischmidt Axel,Bensimon Gilbert,Tittmann Lukas,Lieb Wolfgang,Franke Andre,Ripke Stephan,Whiteman David C,Olsen Catherine M,Uitterlinden Andre G,Hofman Albert,Amouyel Philippe,Traynor Bryan,Singleton Adrew B,Neto Miguel Mitne,Cauchi Ruben J,Ophoff Roel A,van Deerlin Vivianna M,Grosskreutz Julian,Graff Caroline,Brylev Lev,Rogelj Boris,Koritnik Blaž,Zidar Janez,Stević Zorica,Drory Vivian,Povedano Monica,Blair Ian P,Kiernan Matthew C,Nicholson Garth A,Henders Anjali K,de Carvalho Mamede,Pinto Susana,Petri Susanne,Weber Markus,Rouleau Guy A,Silani Vincenzo,Glass Jonathan,Brown Robert H,Landers John E,Shaw Christopher E,Andersen Peter M,Garton Fleur C,McRae Allan F,McLaughlin Russell L,Hardiman Orla,Kenna Kevin P,Wray Naomi R,Al-Chalabi Ammar,Van Damme Philip,van den Berg Leonard H,Veldink Jan H,Veldink Jan H2ORCID,Schönhuth Alexander4ORCID,Balvert Marleen1ORCID

Affiliation:

1. Department of Econometrics and Operations Research, Tilburg University , Tilburg 5037AB, The Netherlands

2. Department of Neurology, University Medical Center Utrecht , Utrecht 3584CX, The Netherlands

3. Department of Cognitive Science and Artificial Intelligence, Tilburg University , Tilburg 5037AB, The Netherlands

4. Faculty of Technology, Bielefeld University , Bielefeld 33615, Germany

Abstract

Abstract Motivation The completion of the genome has paved the way for genome-wide association studies (GWAS), which explained certain proportions of heritability. GWAS are not optimally suited to detect non-linear effects in disease risk, possibly hidden in non-additive interactions (epistasis). Alternative methods for epistasis detection using, e.g. deep neural networks (DNNs) are currently under active development. However, DNNs are constrained by finite computational resources, which can be rapidly depleted due to increasing complexity with the sheer size of the genome. Besides, the curse of dimensionality complicates the task of capturing meaningful genetic patterns for DNNs; therefore necessitates dimensionality reduction. Results We propose a method to compress single nucleotide polymorphism (SNP) data, while leveraging the linkage disequilibrium (LD) structure and preserving potential epistasis. This method involves clustering correlated SNPs into haplotype blocks and training per-block autoencoders to learn a compressed representation of the block’s genetic content. We provide an adjustable autoencoder design to accommodate diverse blocks and bypass extensive hyperparameter tuning. We applied this method to genotyping data from Project MinE, and achieved 99% average test reconstruction accuracy—i.e. minimal information loss—while compressing the input to nearly 10% of the original size. We demonstrate that haplotype-block based autoencoders outperform linear Principal Component Analysis (PCA) by approximately 3% chromosome-wide accuracy of reconstructed variants. To the extent of our knowledge, our approach is the first to simultaneously leverage haplotype structure and DNNs for dimensionality reduction of genetic data. Availability and implementation Data are available for academic use through Project MinE at https://www.projectmine.com/research/data-sharing/, contingent upon terms and requirements specified by the source studies. Code is available at https://github.com/gizem-tas/haploblock-autoencoders.

Funder

Dutch ALS Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3