TranSyT, an innovative framework for identifying transport systems

Author:

Cunha Emanuel1,Lagoa Davide12,Faria José P2,Liu Filipe2,Henry Christopher S2,Dias Oscar13ORCID

Affiliation:

1. Centre of Biological Engineering, University of Minho , Braga 4704-553, Portugal

2. Computing, Environment, and Life Sciences Division, Argonne National Laboratory , Lemont, IL 60439, United States

3. LABBELS—Associate Laboratory , Braga/Guimarães, Portugal

Abstract

AbstractMotivationThe importance and rate of development of genome-scale metabolic models have been growing for the last few years, increasing the demand for software solutions that automate several steps of this process. However, since TRIAGE’s release, software development for the automatic integration of transport reactions into models has stalled.ResultsHere, we present the Transport Systems Tracker (TranSyT). Unlike other transport systems annotation software, TranSyT does not rely on manual curation to expand its internal database, which is derived from highly curated records retrieved from the Transporters Classification Database and complemented with information from other data sources. TranSyT compiles information regarding transporter families and proteins, and derives reactions into its internal database, making it available for rapid annotation of complete genomes. All transport reactions have GPR associations and can be exported with identifiers from four different metabolite databases. TranSyT is currently available as a plugin for merlin v4.0 and an app for KBase.Availability and implementationTranSyT web service: https://transyt.bio.di.uminho.pt/; GitHub for the tool: https://github.com/BioSystemsUM/transyt; GitHub with examples and instructions to run TranSyT: https://github.com/ecunha1996/transyt_paper.

Funder

Portuguese Foundation for Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3