A diel multi-tissue genome-scale metabolic model ofVitis vinifera

Author:

Sampaio MartaORCID,Rocha MiguelORCID,Dias OscarORCID

Abstract

AbstractVitis vinifera, also known as grapevine, is widely cultivated and commercialized, particularly to produce wine. As wine quality is directly linked to fruit quality, studying grapevine metabolism is important to understand the processes underlying grape composition. Genome-scale metabolic models (GSMMs) have been used for the study of plant metabolism and advances have been made, allowing the integration of omics datasets with GSMMs. On the other hand, Machine learning (ML) has been used to analyze omics data, and while the combination of ML with GSMMs has shown promising results, it is still scarcely used to study plants. Here, the first GSSM ofV. viniferawas reconstructed and validated, comprising 7199 genes, 5399 reactions, and 5141 metabolites across 8 compartments. Tissue-specific models for stem, leaf, and berry of the Cabernet Sauvignon cultivar were generated from the original model, through the integration of RNA-Seq data. These models have been merged into diel multi-tissue models to study the interactions between tissues at light and dark phases. The potential of combining ML with GSMMs was explored by using ML to analyze the fluxomics data generated by green and mature grape GSMMs, helping to understand the factors influencing grape quality at different developmental stages.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3