BertSNR: an interpretable deep learning framework for single-nucleotide resolution identification of transcription factor binding sites based on DNA language model

Author:

Luo Hanyu12,Tang Li1,Zeng Min1ORCID,Yin Rui3,Ding Pingjian4ORCID,Luo Lingyun2,Li Min1ORCID

Affiliation:

1. School of Computer Science and Engineering, Central South University , Changsha, Hunan 410083, China

2. School of Computer Science, University of South China , Hengyang, Hunan 421001, China

3. Department of Health Outcome and Biomedical Informatics, University of Florida , Gainesville, FL 32611, United States

4. Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University , Cleveland, OH 44106, United States

Abstract

Abstract Motivation Transcription factors are pivotal in the regulation of gene expression, and accurate identification of transcription factor binding sites (TFBSs) at high resolution is crucial for understanding the mechanisms underlying gene regulation. The task of identifying TFBSs from DNA sequences is a significant challenge in the field of computational biology today. To address this challenge, a variety of computational approaches have been developed. However, these methods face limitations in their ability to achieve high-resolution identification and often lack interpretability. Results We propose BertSNR, an interpretable deep learning framework for identifying TFBSs at single-nucleotide resolution. BertSNR integrates sequence-level and token-level information by multi-task learning based on pre-trained DNA language models. Benchmarking comparisons show that our BertSNR outperforms the existing state-of-the-art methods in TFBS predictions. Importantly, we enhanced the interpretability of the model through attentional weight visualization and motif analysis, and discovered the subtle relationship between attention weight and motif. Moreover, BertSNR effectively identifies TFBSs in promoter regions, facilitating the study of intricate gene regulation. Availability and implementation The BertSNR source code can be found at https://github.com/lhy0322/BertSNR.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3