Metabolic systems cost-benefit analysis for interpreting network structure and regulation

Author:

Carlson Ross P.1

Affiliation:

1. Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA

Abstract

AbstractMotivation: Interpretation of bioinformatics data in terms of cellular function is a major challenge facing systems biology. This question is complicated by robust metabolic networks filled with structural features like parallel pathways and isozymes. Under conditions of nutrient sufficiency, metabolic networks are well known to be regulated for thermodynamic efficiency however; efficient biochemical pathways are anabolically expensive to construct. While parameters like thermodynamic efficiency have been extensively studied, a systems-based analysis of anabolic proteome synthesis ‘costs’ and the cellular function implications of these costs has not been reported.Results: A cost-benefit analysis of an in silico Escherichia coli network revealed the relationship between metabolic pathway proteome synthesis requirements, DNA-coding sequence length, thermodynamic efficiency and substrate affinity. The results highlight basic metabolic network design principles. Pathway proteome synthesis requirements appear to have shaped biochemical network structure and regulation. Under conditions of nutrient scarcity and other general stresses, E.coli expresses pathways with relatively inexpensive proteome synthesis requirements instead of more efficient but also anabolically more expensive pathways. This evolutionary strategy provides a cellular function-based explanation for common network motifs like isozymes and parallel pathways and possibly explains ‘overflow’ metabolisms observed during nutrient scarcity.Contact:  alicia@iastate.eduSupplementary information: Supplementary data are available at Bioinformatics online.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3