Shark: fishing relevant reads in an RNA-Seq sample

Author:

Denti Luca1ORCID,Pirola Yuri1ORCID,Previtali Marco1ORCID,Ceccato Tamara1,Della Vedova Gianluca1ORCID,Rizzi Raffaella1,Bonizzoni Paola1

Affiliation:

1. Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milano 20126, Italy

Abstract

Abstract Motivation Recent advances in high-throughput RNA-Seq technologies allow to produce massive datasets. When a study focuses only on a handful of genes, most reads are not relevant and degrade the performance of the tools used to analyze the data. Removing irrelevant reads from the input dataset leads to improved efficiency without compromising the results of the study. Results We introduce a novel computational problem, called gene assignment and we propose an efficient alignment-free approach to solve it. Given an RNA-Seq sample and a panel of genes, a gene assignment consists in extracting from the sample, the reads that most probably were sequenced from those genes. The problem becomes more complicated when the sample exhibits evidence of novel alternative splicing events. We implemented our approach in a tool called Shark and assessed its effectiveness in speeding up differential splicing analysis pipelines. This evaluation shows that Shark is able to significantly improve the performance of RNA-Seq analysis tools without having any impact on the final results. Availability and implementation The tool is distributed as a stand-alone module and the software is freely available at https://github.com/AlgoLab/shark. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3