ProAffiMuSeq: sequence-based method to predict the binding free energy change of protein–protein complexes upon mutation using functional classification

Author:

Jemimah Sherlyn1,Sekijima Masakazu2,Gromiha M Michael13

Affiliation:

1. Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India

2. Advanced Computational Drug Discovery Unit, Tokyo Institute of Technology, Midori-ku, Kanagawa 226-8503, Yokohama, Japan

3. Advanced Computational Drug Discovery Unit, Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Kanagawa 226-8503, Yokohama, Japan

Abstract

Abstract Motivation Protein–protein interactions are essential for the cell and mediate various functions. However, mutations can disrupt these interactions and may cause diseases. Currently available computational methods require a complex structure as input for predicting the change in binding affinity. Further, they have not included the functional class information for the protein–protein complex. To address this, we have developed a method, ProAffiMuSeq, which predicts the change in binding free energy using sequence-based features and functional class. Results Our method shows an average correlation between predicted and experimentally determined ΔΔG of 0.73 and mean absolute error (MAE) of 0.86 kcal/mol in 10-fold cross-validation and correlation of 0.75 with MAE of 0.94 kcal/mol in the test dataset. ProAffiMuSeq was also tested on an external validation set and showed results comparable to structure-based methods. Our method can be used for large-scale analysis of disease-causing mutations in protein–protein complexes without structural information. Availability and implementation Users can access the method at https://web.iitm.ac.in/bioinfo2/proaffimuseq/. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Department of Science and Technology, India

Ministry of Human Resources Development, India

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3