Gene-set integrative analysis of multi-omics data using tensor-based association test

Author:

Chang Sheng-Mao1,Yang Meng2,Lu Wenbin2,Huang Yu-Jyun3,Huang Yueyang4,Hung Hung3,Miecznikowski Jeffrey C5,Lu Tzu-Pin3,Tzeng Jung-Ying1234ORCID

Affiliation:

1. Department of Statistics, National Cheng Kung University, Tainan 701, Taiwan

2. Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA

3. Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 100, Taiwan

4. Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA

5. Department of Biostatistics, University at Buffalo, Buffalo, NY 14214, USA

Abstract

Abstract Motivation Facilitated by technological advances and the decrease in costs, it is feasible to gather subject data from several omics platforms. Each platform assesses different molecular events, and the challenge lies in efficiently analyzing these data to discover novel disease genes or mechanisms. A common strategy is to regress the outcomes on all omics variables in a gene set. However, this approach suffers from problems associated with high-dimensional inference. Results We introduce a tensor-based framework for variable-wise inference in multi-omics analysis. By accounting for the matrix structure of an individual’s multi-omics data, the proposed tensor methods incorporate the relationship among omics effects, reduce the number of parameters, and boost the modeling efficiency. We derive the variable-specific tensor test and enhance computational efficiency of tensor modeling. Using simulations and data applications on the Cancer Cell Line Encyclopedia (CCLE), we demonstrate our method performs favorably over baseline methods and will be useful for gaining biological insights in multi-omics analysis. Availability and implementation R function and instruction are available from the authors’ website: https://www4.stat.ncsu.edu/~jytzeng/Software/TR.omics/TRinstruction.pdf. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Institutes of Health

Taiwan Ministry of Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3