Random forest of perfect trees: concept, performance, applications and perspectives

Author:

Nguyen Jean-Michel12,Jézéquel Pascal3,Gillois Pierre1,Silva Luisa4,Ben Azzouz Faouda3,Lambert-Lacroix Sophie5,Juin Philippe6,Campone Mario7,Gaultier Aurélie8,Moreau-Gaudry Alexandre1,Antonioli Daniel9

Affiliation:

1. Techniques de l’Ingénierie Médicale et de la Complexité - Informatique, Mathématiques, Applications (TIMC—IMAG) -UMR 5525, Université Grenoble Alpes—CNRS, France

2. CRCINA - INCIT Department - Team 2 - 8, quai Moncousu - BP 70721 - 44007 Nantes cedex 1 , France

3. Institut de Cancérologie de l’Ouest, Bd Jacques Monod, Unité de Bioinfomique, Saint Herblain Cedex, 44805, France

4. École Centrale de Nantes, High Performance Computing Institute, Nantes Cedex 3, 44321, France

5. Département STID, IUT2 de Grenoble—Université Grenoble Alpes, St Martin d’Heres, 38400, France

6. CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Institut de Recherche en Santé-Université de Nantes, Nantes Cedex 1, 44007, France

7. Oncologie Médicale, Institut de Cancérologie de l’Ouest—René Gauducheau, Saint Herblain Cedex, 44805, France

8. Nantes Department of General Practice, 1 rue G. Veil, 44000, Nantes, France

9. Medical Informatics, Tournemire, Quartier Bellevue, France

Abstract

Abstract Motivation The principle of Breiman's random forest (RF) is to build and assemble complementary classification trees in a way that maximizes their variability. We propose a new type of random forest that disobeys Breiman’s principles and involves building trees with no classification errors in very large quantities. We used a new type of decision tree that uses a neuron at each node as well as an in-innovative half Christmas tree structure. With these new RFs, we developed a score, based on a family of ten new statistical information criteria, called Nguyen information criteria (NICs), to evaluate the predictive qualities of features in three dimensions. Results The first NIC allowed the Akaike information criterion to be minimized more quickly than data obtained with the Gini index when the features were introduced in a logistic regression model. The selected features based on the NICScore showed a slight advantage compared to the support vector machines—recursive feature elimination (SVM-RFE) method. We demonstrate that the inclusion of artificial neurons in tree nodes allows a large number of classifiers in the same node to be taken into account simultaneously and results in perfect trees without classification errors. Availability and implementation The methods used to build the perfect trees in this article were implemented in the ‘ROP’ R package, archived at https://cran.r-project.org/web/packages/ROP/index.html. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Institut de Calcul Intensif

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3