Machine Learning for Predicting Chronic Renal Disease Progression in COVID-19 Patients with Acute Renal Injury: A Feasibility Study

Author:

Gracida-Osorno Carlos1,Molina-Salinas Gloria María2ORCID,Góngora-Hernández Roxana3,Brito-Loeza Carlos3ORCID,Uc-Cachón Andrés Humberto2ORCID,Paniagua-Sierra José Ramón4ORCID

Affiliation:

1. Servicio de Medicina Interna, Hospital General Regional No. 1, CMN Ignacio García Téllez, Instituto Mexicano del Seguro Social, Mérida 97150, Mexico

2. Unidad de Investigación Médica Yucatán, Hospital de Especialidades, CMN Ignacio García Téllez, Instituto Mexicano del Seguro Social, Mérida 97150, Mexico

3. Facultad de Matemáticas, Universidad Autónoma de Yucatán, Mérida 97119, Mexico

4. Unidad de Investigación Médica en Enfermedades Nefrológicas, Hospital de Especialidades, CMN Siglo XXI, Instituto Mexicano del Seguro Social, México City 06720, Mexico

Abstract

This study aimed to determine the feasibility of applying machine-learning methods to assess the progression of chronic kidney disease (CKD) in patients with coronavirus disease (COVID-19) and acute renal injury (AKI). The study was conducted on patients aged 18 years or older who were diagnosed with COVID-19 and AKI between April 2020 and March 2021, and admitted to a second-level hospital in Mérida, Yucatán, México. Of the admitted patients, 47.92% died and 52.06% were discharged. Among the discharged patients, 176 developed AKI during hospitalization, and 131 agreed to participate in the study. The study’s results indicated that the area under the receiver operating characteristic curve (AUC-ROC) for the four models was 0.826 for the support vector machine (SVM), 0.828 for the random forest, 0.840 for the logistic regression, and 0.841 for the boosting model. Variable selection methods were utilized to enhance the performance of the classifier, with the SVM model demonstrating the best overall performance, achieving a classification rate of 99.8% ± 0.1 in the training set and 98.43% ± 1.79 in the validation set in AUC-ROC values. These findings have the potential to aid in the early detection and management of CKD, a complication of AKI resulting from COVID-19. Further research is required to confirm these results.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3