New mixture models for decoy-free false discovery rate estimation in mass spectrometry proteomics

Author:

Peng Yisu1,Jain Shantanu1,Li Yong Fuga2,Greguš Michal34,Ivanov Alexander R.34ORCID,Vitek Olga14,Radivojac Predrag134ORCID

Affiliation:

1. Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA

2. Illumina Inc., San Diego, CA 92122, USA

3. Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA

4. Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA

Abstract

Abstract Motivation Accurate estimation of false discovery rate (FDR) of spectral identification is a central problem in mass spectrometry-based proteomics. Over the past two decades, target-decoy approaches (TDAs) and decoy-free approaches (DFAs) have been widely used to estimate FDR. TDAs use a database of decoy species to faithfully model score distributions of incorrect peptide-spectrum matches (PSMs). DFAs, on the other hand, fit two-component mixture models to learn the parameters of correct and incorrect PSM score distributions. While conceptually straightforward, both approaches lead to problems in practice, particularly in experiments that push instrumentation to the limit and generate low fragmentation-efficiency and low signal-to-noise-ratio spectra. Results We introduce a new decoy-free framework for FDR estimation that generalizes present DFAs while exploiting more search data in a manner similar to TDAs. Our approach relies on multi-component mixtures, in which score distributions corresponding to the correct PSMs, best incorrect PSMs and second-best incorrect PSMs are modeled by the skew normal family. We derive EM algorithms to estimate parameters of these distributions from the scores of best and second-best PSMs associated with each experimental spectrum. We evaluate our models on multiple proteomics datasets and a HeLa cell digest case study consisting of more than a million spectra in total. We provide evidence of improved performance over existing DFAs and improved stability and speed over TDAs without any performance degradation. We propose that the new strategy has the potential to extend beyond peptide identification and reduce the need for TDA on all analytical platforms. Availabilityand implementation https://github.com/shawn-peng/FDR-estimation. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference59 articles.

1. Mass spectrometry-based proteomics;Aebersold;Nature,2003

2. False discovery rate estimation in proteomics;Aggarwal;Methods Mol. Biol,2016

3. Fast and accurate identification of semi-tryptic peptides in shotgun proteomics;Alves;Bioinformatics,2008

4. A unified view on skewed distributions arising from selections;Arellano-Valle;Can. J. Stat,2006

5. A class of distributions which includes the normal ones;Azzalini;Scand. J. Stat,1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3