Incorporating temporal information during feature engineering bolsters emulation of spatio-temporal emergence

Author:

Cain Jason Y1,Evarts Jacob I2,Yu Jessica S2,Bagheri Neda12ORCID

Affiliation:

1. Department of Chemical Engineering, University of Washington , Seattle, WA 98195, United States

2. Department of Biology, University of Washington , Seattle, WA 98195, United States

Abstract

Abstract Motivation Emergent biological dynamics derive from the evolution of lower-level spatial and temporal processes. A long-standing challenge for scientists and engineers is identifying simple low-level rules that give rise to complex higher-level dynamics. High-resolution biological data acquisition enables this identification and has evolved at a rapid pace for both experimental and computational approaches. Simultaneously harnessing the resolution and managing the expense of emerging technologies—e.g. live cell imaging, scRNAseq, agent-based models—requires a deeper understanding of how spatial and temporal axes impact biological systems. Effective emulation is a promising solution to manage the expense of increasingly complex high-resolution computational models. In this research, we focus on the emulation of a tumor microenvironment agent-based model to examine the relationship between spatial and temporal environment features, and emergent tumor properties. Results Despite significant feature engineering, we find limited predictive capacity of tumor properties from initial system representations. However, incorporating temporal information derived from intermediate simulation states dramatically improves the predictive performance of machine learning models. We train a deep-learning emulator on intermediate simulation states and observe promising enhancements over emulators trained solely on initial conditions. Our results underscore the importance of incorporating temporal information in the evaluation of spatio-temporal emergent behavior. Nevertheless, the emulators exhibit inconsistent performance, suggesting that the underlying model characterizes unique cell populations dynamics that are not easily replaced. Availability and implementation All source codes for the agent-based model, emulation, and analyses are publicly available at the corresponding DOIs: 10.5281/zenodo.10622155, 10.5281/zenodo.10611675, 10.5281/zenodo.10621244, respectively.

Funder

National Science Foundation CAREER

Washington Research Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3