Obelisc: an identical-by-descent mapping tool based on SNP streak

Author:

Sonehara Kyuto1,Okada Yukinori123

Affiliation:

1. Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan

2. Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita 565-0871, Japan

3. Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan

Abstract

Abstract Motivation Genetic linkage analysis has made a huge contribution to the genetic mapping of Mendelian diseases. However, most previously available linkage analysis methods have limited applicability. Since parametric linkage analysis requires predefined model of inheritance with a fixed set of parameters, it is inapplicable without fully structured pedigree information. Furthermore, the analytical results are dependent on the specification of model parameters. While non-parametric linkage analysis can avoid these problems, the runs of homozygosity (ROH) mapping, a widely used non-parametric linkage analysis method, can only deal with recessive inheritance. The implementation of non-parametric linkage analyses capable of dealing with both dominant and recessive inheritance has been required. Results We have developed the Obelisc (Observational linkage scan), a flexibly applicable user-friendly non-parametric linkage analysis tool, which also provides an intuitive visualization of the analytical results. Obelisc is based on the SNP streak approach, which does not require any predefined inheritance model with parameters. In contrast to the ROH mapping, the SNP streak approach is applicable to both dominant and recessive traits. To illustrate the performance of Obelisc, we generated a pseudo-pedigree from the publicly available BioBank Japan Project genome-wide genotype dataset (n > 180 000). By applying Obelisc to this pseudo-pedigree, we successfully identified the regions with inherited identical-by-descent haplotypes shared among the members of the pseudo-pedigree, which was validated by the population-based haplotype phasing approach. Availability and implementation Obelisc is feely available at https://github.com/qsonehara/Obelisc as a python package with example datasets. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

JSPS

AMED

Bioinformatics Initiative of Osaka University Graduate School of Medicine

Takeda Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3