DepLogo: visualizing sequence dependencies in R

Author:

Grau Jan1ORCID,Nettling Martin1,Keilwagen Jens2

Affiliation:

1. Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany

2. Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut (JKI), Quedlinburg, Germany

Abstract

Abstract Summary Statistical dependencies are present in a variety of sequence data, but are not discernible from traditional sequence logos. Here, we present the R package DepLogo for visualizing inter-position dependencies in aligned sequence data as dependency logos. Dependency logos make dependency structures, which correspond to regular co-occurrences of symbols at dependent positions, visually perceptible. To this end, sequences are partitioned based on their symbols at highly dependent positions as measured by mutual information, and each partition obtains its own visual representation. We illustrate the utility of the DepLogo package in several use cases generating dependency logos from DNA, RNA and protein sequences. Availability and implementation The DepLogo R package is available from CRAN and its source code is available at https://github.com/Jstacs/DepLogo. Supplementary information Supplementary data are available at Bioinformatics online.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference14 articles.

1. On the value of intra-motif dependencies of human insulator protein CTCF;Eggeling;PLOS ONE,2014

2. InMoDe: tools for learning and visualizing intra-motif dependencies of DNA binding sites;Eggeling;Bioinformatics,2017

3. CMV: visualization for RNA and protein family models and their comparisons;Eggenhofer;Bioinformatics,2018

4. The Pfam protein families database in 2019;El-Gebali;Nucleic Acids Res,2019

5. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families;Kalvari;Nucleic Acids Res.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3