Affiliation:
1. Department of Computer Science
2. Molecular Biology Graduate Program, New Mexico State University, Las Cruces, NM 88003, USA
Abstract
Abstract
Motivation
Chromosomal patterning of gene expression in cancer can arise from aneuploidy, genome disorganization or abnormal DNA methylation. To map such patterns, we introduce a weighted univariate clustering algorithm to guarantee linear runtime, optimality and reproducibility.
Results
We present the chromosome clustering method, establish its optimality and runtime and evaluate its performance. It uses dynamic programming enhanced with an algorithm to reduce search-space in-place to decrease runtime overhead. Using the method, we delineated outstanding genomic zones in 17 human cancer types. We identified strong continuity in dysregulation polarity—dominance by either up- or downregulated genes in a zone—along chromosomes in all cancer types. Significantly polarized dysregulation zones specific to cancer types are found, offering potential diagnostic biomarkers. Unreported previously, a total of 109 loci with conserved dysregulation polarity across cancer types give insights into pan-cancer mechanisms. Efficient chromosomal clustering opens a window to characterize molecular patterns in cancer genome and beyond.
Availability and implementation
Weighted univariate clustering algorithms are implemented within the R package ‘Ckmeans.1d.dp’ (4.0.0 or above), freely available at https://cran.r-project.org/package=Ckmeans.1d.dp.
Supplementary information
Supplementary data are available at Bioinformatics online.
Funder
National Science Foundation
USDA
National Cancer Institute Partnership for the Advancement of Cancer Research NCI grants
(NMSU)
Publisher
Oxford University Press (OUP)
Subject
Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献