Self-supervised learning of cell type specificity from immunohistochemical images

Author:

Murphy Michael12,Jegelka Stefanie2,Fraenkel Ernest1

Affiliation:

1. Department of Biological Engineering, Massachusetts Institute of Technology , Cambridge, MA, USA

2. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology , Cambridge, MA, USA

Abstract

Abstract Motivation Advances in bioimaging now permit in situ proteomic characterization of cell–cell interactions in complex tissues, with important applications across a spectrum of biological problems from development to disease. These methods depend on selection of antibodies targeting proteins that are expressed specifically in particular cell types. Candidate marker proteins are often identified from single-cell transcriptomic data, with variable rates of success, in part due to divergence between expression levels of proteins and the genes that encode them. In principle, marker identification could be improved by using existing databases of immunohistochemistry for thousands of antibodies in human tissue, such as the Human Protein Atlas. However, these data lack detailed annotations of the types of cells in each image. Results We develop a method to predict cell type specificity of protein markers from unlabeled images. We train a convolutional neural network with a self-supervised objective to generate embeddings of the images. Using non-linear dimensionality reduction, we observe that the model clusters images according to cell types and anatomical regions for which the stained proteins are specific. We then use estimates of cell type specificity derived from an independent single-cell transcriptomics dataset to train an image classifier, without requiring any human labelling of images. Our scheme demonstrates superior classification of known proteomic markers in kidney compared to selection via single-cell transcriptomics. Availability and implementation Code and trained model are available at www.github.com/murphy17/HPA-SimCLR. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

NSERC Alexander Graham Bell Canadian Graduate Scholarship

Chan Zuckerberg Foundation

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference66 articles.

1. Joint analysis of expression levels and histological images identifies genes associated with tissue morphology;Ash;Nat. Commun,2021

2. Identifying transcriptomic correlates of histology using deep learning;Badea;PLoS One,2020

3. Artefacts in histopathology;Chatterjee;J. Oral Maxillofac. Pathol,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3