Abstract
AbstractIntroductionArtificial intelligence (AI) integration in nephropathology has been growing rapidly in recent years, facing several challenges including the wide range of histological techniques used, the low occurrence of certain diseases, and the need for data sharing. This narrative review retraces the history of AI in nephropathology and provides insights into potential future developments.MethodsElectronic searches in PubMed-MEDLINE and Embase were made to extract pertinent articles from the literature. Works about automated image analysis or the application of an AI algorithm on non-neoplastic kidney histological samples were included and analyzed to extract information such as publication year, AI task, and learning type. Prepublication servers and reviews were not included.ResultsSeventy-six (76) original research articles were selected. Most of the studies were conducted in the United States in the last 7 years. To date, research has been mainly conducted on relatively easy tasks, like single-stain glomerular segmentation. However, there is a trend towards developing more complex tasks such as glomerular multi-stain classification.ConclusionDeep learning has been used to identify patterns in complex histopathology data and looks promising for the comprehensive assessment of renal biopsy, through the use of multiple stains and virtual staining techniques. Hybrid and collaborative learning approaches have also been explored to utilize large amounts of unlabeled data. A diverse team of experts, including nephropathologists, computer scientists, and clinicians, is crucial for the development of AI systems for nephropathology. Collaborative efforts among multidisciplinary experts result in clinically relevant and effective AI tools.Graphical abstract
Funder
Università degli Studi di Milano - Bicocca
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献