A unified approach to protein domain parsing with inter-residue distance matrix

Author:

Zhu Kun1,Su Hong1,Peng Zhenling2ORCID,Yang Jianyi2ORCID

Affiliation:

1. School of Mathematical Sciences, Nankai University , Tianjin 300071, China

2. Ministry of Education Frontiers Science Center for Nonlinear Expectations, Research Center for Mathematics and Interdisciplinary Sciences, Shandong University , Qingdao 266237, China

Abstract

Abstract Motivation It is fundamental to cut multi-domain proteins into individual domains, for precise domain-based structural and functional studies. In the past, sequence-based and structure-based domain parsing was carried out independently with different methodologies. The recent progress in deep learning-based protein structure prediction provides the opportunity to unify sequence-based and structure-based domain parsing. Results Based on the inter-residue distance matrix, which can be either derived from the input structure or predicted by trRosettaX, we can decode the domain boundaries under a unified framework. We name the proposed method UniDoc. The principle of UniDoc is based on the well-accepted physical concept of maximizing intra-domain interaction while minimizing inter-domain interaction. Comprehensive tests on five benchmark datasets indicate that UniDoc outperforms other state-of-the-art methods in terms of both accuracy and speed, for both sequence-based and structure-based domain parsing. The major contribution of UniDoc is providing a unified framework for structure-based and sequence-based domain parsing. We hope that UniDoc would be a convenient tool for protein domain analysis. Availability and implementation https://yanglab.nankai.edu.cn/UniDoc/. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3