The evolution of contact prediction: Evidence that contact selection in statistical contact prediction is changing

Author:

Chonofsky Mark1,de Oliveira Saulo H P23,Krawczyk Konrad4,Deane Charlotte M1

Affiliation:

1. Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK

2. SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California, USA

3. Department of Bioengineering, Stanford University, Menlo Park, California, USA

4. NaturalAntibody, Hamburg, Germany

Abstract

Abstract Motivation Over the last few years, the field of protein structure prediction has been transformed by increasingly-accurate contact prediction software. These methods are based on the detection of coevolutionary relationships between residues from multiple sequence alignments. However, despite speculation, there is little evidence of a link between contact prediction and the physico-chemical interactions which drive amino-acid coevolution. Furthermore, existing protocols predict only a fraction of all protein contacts and it is not clear why some contacts are favoured over others. Using a dataset of 863 protein domains, we assessed the physico-chemical interactions of contacts predicted by CCMpred, MetaPSICOV, and DNCON2, as examples of direct coupling analysis, meta-prediction, and deep learning. Results We considered correctly-predicted contacts and compared their properties against the protein contacts that were not predicted. Predicted contacts tend to form more bonds than non-predicted contacts, which suggests these contacts may be more important than contacts that were not predicted. Comparing the contacts predicted by each method, we found that metaPSICOV and DNCON2 favour accuracy whereas CCMPred detects contacts with more bonds. This suggests that the push for higher accuracy may lead to a loss of physico-chemically important contacts. These results underscore the connection between protein physico-chemistry and the coevolutionary couplings that can be derived from multiple sequence alignments. This relationship is likely to be relevant to protein structure prediction and functional analysis of protein structure and may be key to understanding their utility for different problems in structural biology. Availability We use publicly-available databases. Our code is available for download at http://opig.stats.ox.ac.uk/. Supplementary information Supplementary information is available at Bioinformatics online.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3