CLAIRE: contrastive learning-based batch correction framework for better balance between batch mixing and preservation of cellular heterogeneity

Author:

Yan Xuhua1,Zheng Ruiqing1ORCID,Wu Fangxiang2ORCID,Li Min1ORCID

Affiliation:

1. Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University , Changsha 410083, China

2. Division of Biomedical Engineering, Department of Computer Science, Department of Mechanical Engineering, University of Saskatchewan , Saskatoon, SK S7N 5A9 , Canada

Abstract

AbstractMotivationIntegration of growing single-cell RNA sequencing datasets helps better understand cellular identity and function. The major challenge for integration is removing batch effects while preserving biological heterogeneities. Advances in contrastive learning have inspired several contrastive learning-based batch correction methods. However, existing contrastive-learning-based methods exhibit noticeable ad hoc trade-off between batch mixing and preservation of cellular heterogeneities (mix-heterogeneity trade-off). Therefore, a deliberate mix-heterogeneity trade-off is expected to yield considerable improvements in scRNA-seq dataset integration.ResultsWe develop a novel contrastive learning-based batch correction framework, CIAIRE, which achieves superior mix-heterogeneity trade-off. The key contributions of CLAIRE are proposal of two complementary strategies: construction strategy and refinement strategy, to improve the appropriateness of positive pairs. Construction strategy dynamically generates positive pairs by augmenting inter-batch mutual nearest neighbors (MNN) with intra-batch k-nearest neighbors (KNN), which improves the coverage of positive pairs for the whole distribution of shared cell types between batches. Refinement strategy aims to automatically reduce the potential false positive pairs from the construction strategy, which resorts to the memory effect of deep neural networks. We demonstrate that CLAIRE possesses superior mix-heterogeneity trade-off over existing contrastive learning-based methods. Benchmark results on six real datasets also show that CLAIRE achieves the best integration performance against eight state-of-the-art methods. Finally, comprehensive experiments are conducted to validate the effectiveness of CLAIRE.Availability and implementationThe source code and data used in this study can be found in https://github.com/CSUBioGroup/CLAIRE-release.Supplementary informationSupplementary data are available at Bioinformatics online.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3