scNCL: transferring labels from scRNA-seq to scATAC-seq data with neighborhood contrastive regularization

Author:

Yan Xuhua1,Zheng Ruiqing1ORCID,Chen Jinmiao23ORCID,Li Min1ORCID

Affiliation:

1. School of Computer Science and Engineering, Central South University , Changsha 410083, China

2. Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR) , Singapore 138648, Singapore

3. Immunology Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore (NUS) , Singapore 117545, Singapore

Abstract

Abstract Motivation scATAC-seq has enabled chromatin accessibility landscape profiling at the single-cell level, providing opportunities for determining cell-type-specific regulation codes. However, high dimension, extreme sparsity, and large scale of scATAC-seq data have posed great challenges to cell-type identification. Thus, there has been a growing interest in leveraging the well-annotated scRNA-seq data to help annotate scATAC-seq data. However, substantial computational obstacles remain to transfer information from scRNA-seq to scATAC-seq, especially for their heterogeneous features. Results We propose a new transfer learning method, scNCL, which utilizes prior knowledge and contrastive learning to tackle the problem of heterogeneous features. Briefly, scNCL transforms scATAC-seq features into gene activity matrix based on prior knowledge. Since feature transformation can cause information loss, scNCL introduces neighborhood contrastive learning to preserve the neighborhood structure of scATAC-seq cells in raw feature space. To learn transferable latent features, scNCL uses a feature projection loss and an alignment loss to harmonize embeddings between scRNA-seq and scATAC-seq. Experiments on various datasets demonstrated that scNCL not only realizes accurate and robust label transfer for common types, but also achieves reliable detection of novel types. scNCL is also computationally efficient and scalable to million-scale datasets. Moreover, we prove scNCL can help refine cell-type annotations in existing scATAC-seq atlases. Availability and implementation The source code and data used in this paper can be found in https://github.com/CSUBioGroup/scNCL-release.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3