TT3D: Leveraging precomputed protein 3D sequence models to predict protein–protein interactions

Author:

Sledzieski Samuel1ORCID,Devkota Kapil2ORCID,Singh Rohit34ORCID,Cowen Lenore2ORCID,Berger Bonnie15ORCID

Affiliation:

1. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology , Cambridge, MA 02139, United States

2. Department of Computer Science, Tufts University, 177 College Avenue , Medford, MA 02155, United States

3. Department of Biostatistics & Bioinformatics, Duke University , Durham, NC 27705, United States

4. Department of Cell Biology, Duke University , Durham, NC 27705, United States

5. Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue , Cambridge, MA 02139, United States

Abstract

Abstract Motivation High-quality computational structural models are now precomputed and available for nearly every protein in UniProt. However, the best way to leverage these models to predict which pairs of proteins interact in a high-throughput manner is not immediately clear. The recent Foldseek method of van Kempen et al. encodes the structural information of distances and angles along the protein backbone into a linear string of the same length as the protein string, using tokens from a 21-letter discretized structural alphabet (3Di). Results We show that using both the amino acid sequence and the 3Di sequence generated by Foldseek as inputs to our recent deep-learning method, Topsy-Turvy, substantially improves the performance of predicting protein–protein interactions cross-species. Thus TT3D (Topsy-Turvy 3D) presents a way to reuse all the computational effort going into producing high-quality structural models from sequence, while being sufficiently lightweight so that high-quality binary protein–protein interaction predictions across all protein pairs can be made genome-wide. Availability and Implementation TT3D is available at https://github.com/samsledje/D-SCRIPT. An archived version of the code at time of submission can be found at https://zenodo.org/records/10037674.

Funder

National Science Foundation Graduate Research Fellowship

National Science Foundation

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3