Democratizing protein language models with parameter-efficient fine-tuning

Author:

Sledzieski Samuel12ORCID,Kshirsagar Meghana1,Baek Minkyung3,Dodhia Rahul1,Lavista Ferres Juan1ORCID,Berger Bonnie24

Affiliation:

1. AI for Good Research Lab, Microsoft Corporation, Redmond, WA 98052

2. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139

3. Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea

4. Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract

Proteomics has been revolutionized by large protein language models (PLMs), which learn unsupervised representations from large corpora of sequences. These models are typically fine-tuned in a supervised setting to adapt the model to specific downstream tasks. However, the computational and memory footprint of fine-tuning (FT) large PLMs presents a barrier for many research groups with limited computational resources. Natural language processing has seen a similar explosion in the size of models, where these challenges have been addressed by methods for parameter-efficient fine-tuning (PEFT). In this work, we introduce this paradigm to proteomics through leveraging the parameter-efficient method LoRA and training new models for two important tasks: predicting protein–protein interactions (PPIs) and predicting the symmetry of homooligomer quaternary structures. We show that these approaches are competitive with traditional FT while requiring reduced memory and substantially fewer parameters. We additionally show that for the PPI prediction task, training only the classification head also remains competitive with full FT, using five orders of magnitude fewer parameters, and that each of these methods outperform state-of-the-art PPI prediction methods with substantially reduced compute. We further perform a comprehensive evaluation of the hyperparameter space, demonstrate that PEFT of PLMs is robust to variations in these hyperparameters, and elucidate where best practices for PEFT in proteomics differ from those in natural language processing. All our model adaptation and evaluation code is available open-source at https://github.com/microsoft/peft_proteomics . Thus, we provide a blueprint to democratize the power of PLM adaptation to groups with limited computational resources.

Funder

Microsoft

NSF | National Science Foundation Graduate Research Fellowship Program

HHS | National Institutes of Health

Publisher

Proceedings of the National Academy of Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3