Kimma: flexible linear mixed effects modeling with kinship covariance for RNA-seq data

Author:

Dill-McFarland Kimberly A1ORCID,Mitchell Kiana12,Batchu Sashank1,Segnitz Richard Max1,Benson Basilin3,Janczyk Tomasz3,Cox Madison S1,Mayanja-Kizza Harriet4,Boom William Henry5,Benchek Penelope6,Stein Catherine M6,Hawn Thomas R1,Altman Matthew C13

Affiliation:

1. Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, 750 Republican St , Seattle, WA 98109, United States

2. Department of Biology, University of California San Diego, 9500 Gilman Dr , La Jolla, CA 92093, United States

3. Systems Immunology Division, Benaroya Research Institute, 1201 Ninth Avenue , Seattle, CA 98101, United States

4. Department of Medicine, School of Medicine, Makerere University , PO Box 7072, Kampala, Uganda

5. Department of Medicine, Case Western Reserve University, 10900 Euclid Ave , Cleveland, OH 44106, United States

6. Department of Population & Quantitative Health Sciences, Case Western Reserve University, 10900 Euclid Ave , Cleveland, OH 44106, United States

Abstract

Abstract Motivation The identification of differentially expressed genes (DEGs) from transcriptomic datasets is a major avenue of research across diverse disciplines. However, current bioinformatic tools do not support covariance matrices in DEG modeling. Here, we introduce kimma (Kinship In Mixed Model Analysis), an open-source R package for flexible linear mixed effects modeling including covariates, weights, random effects, covariance matrices, and fit metrics. Results In simulated datasets, kimma detects DEGs with similar specificity, sensitivity, and computational time as limma unpaired and dream paired models. Unlike other software, kimma supports covariance matrices as well as fit metrics like Akaike information criterion (AIC). Utilizing genetic kinship covariance, kimma revealed that kinship impacts model fit and DEG detection in a related cohort. Thus, kimma equals or outcompetes current DEG pipelines in sensitivity, computational time, and model complexity. Availability and implementation Kimma is freely available on GitHub https://github.com/BIGslu/kimma with an instructional vignette at https://bigslu.github.io/kimma_vignette/kimma_vignette.html.

Funder

Bill and Melinda Gates Foundation

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3