A safety framework for flow decomposition problems via integer linear programming

Author:

Dias Fernando H C1,Cáceres Manuel1ORCID,Williams Lucia2,Mumey Brendan2,Tomescu Alexandru I1ORCID

Affiliation:

1. Department of Computer Science, University of Helsinki , Helsinki 00560, Finland

2. School of Computing, Montana State University , Bozeman, MT 59717, United States

Abstract

Abstract Motivation Many important problems in Bioinformatics (e.g. assembly or multiassembly) admit multiple solutions, while the final objective is to report only one. A common approach to deal with this uncertainty is finding “safe” partial solutions (e.g. contigs) which are common to all solutions. Previous research on safety has focused on polynomially time solvable problems, whereas many successful and natural models are NP-hard to solve, leaving a lack of “safety tools” for such problems. We propose the first method for computing all safe solutions for an NP-hard problem, “minimum flow decomposition” (MFD). We obtain our results by developing a “safety test” for paths based on a general integer linear programming (ILP) formulation. Moreover, we provide implementations with practical optimizations aimed to reduce the total ILP time, the most efficient of these being based on a recursive group-testing procedure. Results Experimental results on transcriptome datasets show that all safe paths for MFDs correctly recover up to 90% of the full RNA transcripts, which is at least 25% more than previously known safe paths. Moreover, despite the NP-hardness of the problem, we can report all safe paths for 99.8% of the over 27 000 non-trivial graphs of this dataset in only 1.5 h. Our results suggest that, on perfect data, there is less ambiguity than thought in the notoriously hard RNA assembly problem. Availability and implementation https://github.com/algbio/mfd-safety.

Funder

European Research Council

European Union’s Horizon 2020 research and innovation programme

Academy of Finland

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Width Helps and Hinders Splitting Flows;ACM Transactions on Algorithms;2024-03-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3