Full-length de novo viral quasispecies assembly through variation graph construction

Author:

Baaijens Jasmijn A1,Van der Roest Bastiaan2,Köster Johannes34,Stougie Leen156,Schönhuth Alexander167

Affiliation:

1. Life Sciences and Health Group, Centrum Wiskunde & Informatica, Amsterdam, Netherlands

2. Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands

3. Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany

4. Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA

5. Department of Econometrics and Operations Research, Vrije Universiteit, Amsterdam, Netherlands

6. INRIA-Erable, Grenoble, France

7. Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands

Abstract

Abstract Motivation Viruses populate their hosts as a viral quasispecies: a collection of genetically related mutant strains. Viral quasispecies assembly is the reconstruction of strain-specific haplotypes from read data, and predicting their relative abundances within the mix of strains is an important step for various treatment-related reasons. Reference genome independent (‘de novo’) approaches have yielded benefits over reference-guided approaches, because reference-induced biases can become overwhelming when dealing with divergent strains. While being very accurate, extant de novo methods only yield rather short contigs. The remaining challenge is to reconstruct full-length haplotypes together with their abundances from such contigs. Results We present Virus-VG as a de novo approach to viral haplotype reconstruction from preassembled contigs. Our method constructs a variation graph from the short input contigs without making use of a reference genome. Then, to obtain paths through the variation graph that reflect the original haplotypes, we solve a minimization problem that yields a selection of maximal-length paths that is, optimal in terms of being compatible with the read coverages computed for the nodes of the variation graph. We output the resulting selection of maximal length paths as the haplotypes, together with their abundances. Benchmarking experiments on challenging simulated and real datasets show significant improvements in assembly contiguity compared to the input contigs, while preserving low error rates compared to the state-of-the-art viral quasispecies assemblers. Availability and implementation Virus-VG is freely available at https://bitbucket.org/jbaaijens/virus-vg. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Netherlands Organisation for Scientific Research

NWO

Gravitation Programme Networks

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3