iCpG-Pos: an accurate computational approach for identification of CpG sites using positional features on single-cell whole genome sequence data

Author:

Park Sehi1,Rehman Mobeen Ur1ORCID,Ullah Farman2,Tayara Hilal3ORCID,Chong Kil To14ORCID

Affiliation:

1. Department of Electronics and Information Engineering, Jeonbuk National University , Jeonju 54896, South Korea

2. College of Information Technology in the United Arab Emirates University (UAEU) , Abu Dhabi 15551, UAE

3. School of International Engineering and Science, Jeonbuk National University , Jeonju 54896, South Korea

4. Advances Electronics and Information Research Center, Jeonbuk National University , Jeonju 54896, South Korea

Abstract

Abstract Motivation The investigation of DNA methylation can shed light on the processes underlying human well-being and help determine overall human health. However, insufficient coverage makes it challenging to implement single-stranded DNA methylation sequencing technologies, highlighting the need for an efficient prediction model. Models are required to create an understanding of the underlying biological systems and to project single-cell (methylated) data accurately. Results In this study, we developed positional features for predicting CpG sites. Positional characteristics of the sequence are derived using data from CpG regions and the separation between nearby CpG sites. Multiple optimized classifiers and different ensemble learning approaches are evaluated. The OPTUNA framework is used to optimize the algorithms. The CatBoost algorithm followed by the stacking algorithm outperformed existing DNA methylation identifiers. Availability and implementation The data and methodologies used in this study are openly accessible to the research community. Researchers can access the positional features and algorithms used for predicting CpG site methylation patterns. To achieve superior performance, we employed the CatBoost algorithm followed by the stacking algorithm, which outperformed existing DNA methylation identifiers. The proposed iCpG-Pos approach utilizes only positional features, resulting in a substantial reduction in computational complexity compared to other known approaches for detecting CpG site methylation patterns. In conclusion, our study introduces a novel approach, iCpG-Pos, for predicting CpG site methylation patterns. By focusing on positional features, our model offers both accuracy and efficiency, making it a promising tool for advancing DNA methylation research and its applications in human health and well-being.

Funder

National Research Foundation of Korea

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference43 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3