PEDL: extracting protein–protein associations using deep language models and distant supervision

Author:

Weber Leon12,Thobe Kirsten2,Migueles Lozano Oscar Arturo2,Wolf Jana2,Leser Ulf1

Affiliation:

1. Computer Science Department, Humboldt-Universität zu Berlin, Berlin 10099, Germany

2. Group Mathematical Modelling of Cellular Processes, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany

Abstract

Abstract Motivation A significant portion of molecular biology investigates signalling pathways and thus depends on an up-to-date and complete resource of functional protein–protein associations (PPAs) that constitute such pathways. Despite extensive curation efforts, major pathway databases are still notoriously incomplete. Relation extraction can help to gather such pathway information from biomedical publications. Current methods for extracting PPAs typically rely exclusively on rare manually labelled data which severely limits their performance. Results We propose PPA Extraction with Deep Language (PEDL), a method for predicting PPAs from text that combines deep language models and distant supervision. Due to the reliance on distant supervision, PEDL has access to an order of magnitude more training data than methods solely relying on manually labelled annotations. We introduce three different datasets for PPA prediction and evaluate PEDL for the two subtasks of predicting PPAs between two proteins, as well as identifying the text spans stating the PPA. We compared PEDL with a recently published state-of-the-art model and found that on average PEDL performs better in both tasks on all three datasets. An expert evaluation demonstrates that PEDL can be used to predict PPAs that are missing from major pathway databases and that it correctly identifies the text spans supporting the PPA. Availability and implementation PEDL is freely available at https://github.com/leonweber/pedl. The repository also includes scripts to generate the used datasets and to reproduce the experiments from this article. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

HEIBRIDS

German Federal Ministry of Education and Research

BMBF

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3