Multi-layered network-based pathway activity inference using directed random walks: application to predicting clinical outcomes in urologic cancer

Author:

Kim So Yeon12,Choe Eun Kyung23,Shivakumar Manu2,Kim Dokyoon24ORCID,Sohn Kyung-Ah15ORCID

Affiliation:

1. Department of Software and Computer Engineering, Ajou University, Suwon 16499, South Korea

2. Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

3. Department of Surgery, Seoul National University Hospital Healthcare System Gangnam Center, Seoul 06236, South Korea

4. Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA

5. Department of Artificial Intelligence, Ajou University, Suwon 16499, South Korea

Abstract

Abstract Motivation To better understand the molecular features of cancers, a comprehensive analysis using multi-omics data has been conducted. In addition, a pathway activity inference method has been developed to facilitate the integrative effects of multiple genes. In this respect, we have recently proposed a novel integrative pathway activity inference approach, iDRW and demonstrated the effectiveness of the method with respect to dichotomizing two survival groups. However, there were several limitations, such as a lack of generality. In this study, we designed a directed gene–gene graph using pathway information by assigning interactions between genes in multiple layers of networks. Results As a proof-of-concept study, it was evaluated using three genomic profiles of urologic cancer patients. The proposed integrative approach achieved improved outcome prediction performances compared with a single genomic profile alone and other existing pathway activity inference methods. The integrative approach also identified common/cancer-specific candidate driver pathways as predictive prognostic features in urologic cancers. Furthermore, it provides better biological insights into the prioritized pathways and genes in an integrated view using a multi-layered gene–gene network. Our framework is not specifically designed for urologic cancers and can be generally applicable for various datasets. Availability and implementation iDRW is implemented as the R software package. The source codes are available at https://github.com/sykim122/iDRW. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Research Foundation of Korea

Korean government

National Library of Medicine

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3