MOSGA: Modular Open-Source Genome Annotator

Author:

Martin Roman12ORCID,Hackl Thomas3ORCID,Hattab Georges1ORCID,Fischer Matthias G3ORCID,Heider Dominik1ORCID

Affiliation:

1. Department of Mathematics and Computer Science, University of Marburg, 35032 Marburg, Germany

2. Department of Organic-Analytical Chemistry, TUM Campus Straubing, 94315 Straubing, Germany

3. Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg 69120, Germany

Abstract

Abstract Motivation The generation of high-quality assemblies, even for large eukaryotic genomes, has become a routine task for many biologists thanks to recent advances in sequencing technologies. However, the annotation of these assemblies—a crucial step toward unlocking the biology of the organism of interest—has remained a complex challenge that often requires advanced bioinformatics expertise. Results Here, we present MOSGA (Modular Open-Source Genome Annotator), a genome annotation framework for eukaryotic genomes with a user-friendly web-interface that generates and integrates annotations from various tools. The aggregated results can be analyzed with a fully integrated genome browser and are provided in a format ready for submission to NCBI. MOSGA is built on a portable, customizable and easily extendible Snakemake backend, and thus, can be tailored to a wide range of users and projects. Availability and implementation We provide MOSGA as a web service at https://mosga.mathematik.uni-marburg.de and as a docker container at registry.gitlab.com/mosga/mosga: latest. Source code can be found at https://gitlab.com/mosga/mosga Supplementary information Supplementary data are available at Bioinformatics online.

Funder

European Regional Development Fund

EFRE-Program

European Territorial Cooperation

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3