Highly efficient clustering of long-read transcriptomic data with GeLuster

Author:

Ma Junchi12,Zhao Xiaoyu2,Qi Enfeng3,Han Renmin1,Yu Ting1ORCID,Li Guojun1ORCID

Affiliation:

1. Research Center for Mathematics and Interdisciplinary Sciences (Frontiers Science Center for Nonlinear Expectations), Shandong University , Qingdao 266237, China

2. School of Mathematics, Shandong University , Jinan, Shandong 250100, China

3. School of Mathematics and Statistics, Guangxi Normal University , Guilin 541000, China

Abstract

Abstract Motivation The advancement of long-read RNA sequencing technologies leads to a bright future for transcriptome analysis, in which clustering long reads according to their gene family of origin is of great importance. However, existing de novo clustering algorithms require plenty of computing resources. Results We developed a new algorithm GeLuster for clustering long RNA-seq reads. Based on our tests on one simulated dataset and nine real datasets, GeLuster exhibited superior performance. On the tested Nanopore datasets it ran 2.9–17.5 times as fast as the second-fastest method with less than one-seventh of memory consumption, while achieving higher clustering accuracy. And on the PacBio data, GeLuster also had a similar performance. It sets the stage for large-scale transcriptome study in future. Availability and implementation GeLuster is freely available at https://github.com/yutingsdu/GeLuster.

Funder

General Program of Guangxi Natural Science Foundation

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Shandong Province

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3