ESPRESSO: Robust discovery and quantification of transcript isoforms from error-prone long-read RNA-seq data

Author:

Gao Yuan1ORCID,Wang Feng1ORCID,Wang Robert12ORCID,Kutschera Eric1ORCID,Xu Yang12ORCID,Xie Stephan1ORCID,Wang Yuanyuan1,Kadash-Edmondson Kathryn E.1ORCID,Lin Lan34ORCID,Xing Yi135ORCID

Affiliation:

1. Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA.

2. Genomics and Computational Biology Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA.

3. Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

4. Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA.

5. Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA.

Abstract

Long-read RNA sequencing (RNA-seq) holds great potential for characterizing transcriptome variation and full-length transcript isoforms, but the relatively high error rate of current long-read sequencing platforms poses a major challenge. We present ESPRESSO, a computational tool for robust discovery and quantification of transcript isoforms from error-prone long reads. ESPRESSO jointly considers alignments of all long reads aligned to a gene and uses error profiles of individual reads to improve the identification of splice junctions and the discovery of their corresponding transcript isoforms. On both a synthetic spike-in RNA sample and human RNA samples, ESPRESSO outperforms multiple contemporary tools in not only transcript isoform discovery but also transcript isoform quantification. In total, we generated and analyzed ~1.1 billion nanopore RNA-seq reads covering 30 human tissue samples and three human cell lines. ESPRESSO and its companion dataset provide a useful resource for studying the RNA repertoire of eukaryotic transcriptomes.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3