Deep-learning with synthetic data enables automated picking of cryo-EM particle images of biological macromolecules

Author:

Yao Ruijie1,Qian Jiaqiang1,Huang Qiang12ORCID

Affiliation:

1. State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China

2. Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 201203, China

Abstract

Abstract Motivation Single-particle cryo-electron microscopy (cryo-EM) has become a powerful technique for determining 3D structures of biological macromolecules at near-atomic resolution. However, this approach requires picking huge numbers of macromolecular particle images from thousands of low-contrast, high-noisy electron micrographs. Although machine-learning methods were developed to get rid of this bottleneck, it still lacks universal methods that could automatically picking the noisy cryo-EM particles of various macromolecules. Results Here, we present a deep-learning segmentation model that employs fully convolutional networks trained with synthetic data of known 3D structures, called PARSED (PARticle SEgmentation Detector). Without using any experimental information, PARSED could automatically segment the cryo-EM particles in a whole micrograph at a time, enabling faster particle picking than previous template/feature-matching and particle-classification methods. Applications to six large public cryo-EM datasets clearly validated its universal ability to pick macromolecular particles of various sizes. Thus, our deep-learning method could break the particle-picking bottleneck in the single-particle analysis, and thereby accelerates the high-resolution structure determination by cryo-EM. Availability and implementation The PARSED package and user manual for noncommercial use are available as Supplementary Material (in the compressed file: parsed_v1.zip). Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Natural Science Foundation of China

National Major Scientific and Technological Special Project for ‘Significant New Drugs Development’

Shanghai Supercomputer Center and the National Center for Protein Sciences Shanghai

NCPSS

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3