Swin-cryoEM: Multi-class cryo-electron micrographs single particle mixed detection method

Author:

Fang KunORCID,Wang JinLing,Chen QingFeng,Feng XianORCID,Qu YouMing,Shi Jiachi,Xu Zhuomin

Abstract

Cryo-electron micrograph images have various characteristics such as varying sizes, shapes, and distribution densities of individual particles, severe background noise, high levels of impurities, irregular shapes, blurred edges, and similar color to the background. How to demonstrate good adaptability in the field of image vision by picking up single particles from multiple types of cryo-electron micrographs is currently a challenge in the field of cryo-electron micrographs. This paper combines the characteristics of the MixUp hybrid enhancement algorithm, enhances the image feature information in the pre-processing stage, builds a feature perception network based on the channel self-attention mechanism in the forward network of the Swin Transformer model network, achieving adaptive adjustment of self-attention mechanism between different single particles, increasing the network’s tolerance to noise, Incorporating PReLU activation function to enhance information exchange between pixel blocks of different single particles, and combining the Cross-Entropy function with the softmax function to construct a classification network based on Swin Transformer suitable for cryo-electron micrograph single particle detection model (Swin-cryoEM), achieving mixed detection of multiple types of single particles. Swin-cryoEM algorithm can better solve the problem of good adaptability in picking single particles of many types of cryo-electron micrographs, improve the accuracy and generalization ability of the single particle picking method, and provide high-quality data support for the three-dimensional reconstruction of a single particle. In this paper, ablation experiments and comparison experiments were designed to evaluate and compare Swin-cryoEM algorithms in detail and comprehensively on multiple datasets. The Average Precision is an important evaluation index of the evaluation model, and the optimal Average Precision reached 95.5% in the training stage Swin-cryoEM, and the single particle picking performance was also superior in the prediction stage. This model inherits the advantages of the Swin Transformer detection model and is superior to mainstream models such as Faster R-CNN and YOLOv5 in terms of the single particle detection capability of cryo-electron micrographs.

Funder

the GHfund A

Innovative Development Project of Hunan Meteorological Bureau

Innovation and Development Key Project of Hunan Meteorological Bureau

the Key Scientific Research Projects of Hunan Meteorological Bureau

Publisher

Public Library of Science (PLoS)

Reference31 articles.

1. A fast method for particle picking in cryo-electron micrographs based on Faster R-CNN; proceedings of the AIP conference proceedings, F;Y XIAO;[C]. AIP Publishing LLC,2017

2. Automatic license plate recognition system for vehicles using a CNN;P. Kumar;Computers, Materials & Continua,2022

3. WilDect-YOLO: An efficient and robust computer vision-based accurate object localization model for automated endangered wildlife detection,;Arunabha M. Roy;Ecological Informatics,2023

4. Faster r-cnn: Towards real-time object detection with region proposal networks [J];S REN;Advances in neural information processing systems,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3