pyaging: a Python-based compendium of GPU-optimized aging clocks

Author:

de Lima Camillo Lucas Paulo1ORCID

Affiliation:

1. School of Clinical Medicine, University of Cambridge , Cambridge CB2 0SP, United Kingdom

Abstract

Abstract Motivation Aging is intricately linked to diseases and mortality. It is reflected in molecular changes across various tissues which can be leveraged for the development of biomarkers of aging using machine learning models, known as aging clocks. Despite advancements in the field, a significant challenge remains: the lack of robust, Python-based software tools for integrating and comparing these diverse models. This gap highlights the need for comprehensive solutions that can handle the complexity and variety of data in aging research. Results To address this gap, I introduce pyaging, a comprehensive open-source Python package designed to facilitate aging research. pyaging harmonizes dozens of aging clocks, covering a range of molecular data types such as DNA methylation, transcriptomics, histone mark ChIP-Seq, and ATAC-Seq. The package is not limited to traditional model types; it features a diverse array, from linear and principal component models to neural networks and automatic relevance determination models. Thanks to a PyTorch-based backend that enables GPU acceleration, pyaging is capable of rapid inference, even when dealing with large datasets and complex models. In addition, the package’s support for multi-species analysis extends its utility across various organisms, including humans, various mammals, and Caenorhabditis elegans. Availability and implementation pyaging is accessible on GitHub, at https://github.com/rsinghlab/pyaging, and the distribution is available on PyPi, at https://pypi.org/project/pyaging/. The software is also archived on Zenodo, at https://zenodo.org/doi/10.5281/zenodo.10335011.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3