Affiliation:
1. Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
Abstract
Abstract
Efficient single-cell assignment is essential for single-cell sequencing data analysis. With the explosive growth of single-cell sequencing data, multiple single-cell sequencing data sources are available for the same kind of tissue, which can be integrated to further improve single-cell assignment; however, an efficient integration strategy is still lacking due to the great challenges of data heterogeneity existing in multiple references. To this end, we present mtSC, a flexible single-cell assignment framework that integrates multiple references based on multitask deep metric learning designed specifically for cell type identification within tissues with multiple single-cell sequencing data as references. We evaluated mtSC on a comprehensive set of publicly available benchmark datasets and demonstrated its state-of-the-art effectiveness for integrative single-cell assignment with multiple references.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Shanghai Natural Science Foundation
Shanghai Artificial Intelligence Technology Standard Project
Shanghai Zhangjiang National Innovtaion Demonstration Zone
Publisher
Oxford University Press (OUP)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献